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Abstract—Movable antenna (MA) technology has recently
attracted significant research attention as a promising solution for
enhancing wireless network performance. However, conventional
MAs can only effectively serve users in close proximity, resulting
in restricted coverage. To overcome this limitation, in this
paper, we explore a beyond-diagonal reconfigurable intelligent
surface (BD-RIS)-aided MA system. First, we propose a penalty-
based block coordinate descent optimization algorithm tailored
to the new constraints imposed by BD-RIS-aided MA systems.
Specifically, our method decouples the inherently non-convex and
coupled antenna distance constraints by introducing auxiliary
optimization variables. Subsequently, the resulting problem is ef-
ficiently addressed via alternating optimization, with closed-form
updates for the auxiliary variables. Furthermore, recognizing
the challenges posed by large-scale BD-RIS deployments, which
have the potential for serving a substantial number of users,
traditional centralized optimization frameworks encounter con-
siderable difficulties, including high computational complexity,
excessive communication overheads, as well as limited scalability
with increasing system size. To address these limitations, we
propose an efficient asynchronous alternating direction method
of multipliers (AS-ADMM) scheme aimed at maximizing the sum
rate. Our numerical results demonstrate that the BD-RIS-aided
MA system achieves superior performance compared to both
conventional fixed position antenna and BD-RIS-aided systems.
Furthermore, the proposed AS-ADMM framework can achieve
a trade-off between performance and computational overhead,
highlighting its potential for practical implementation in large-
scale wireless communication networks.

Index Terms—Movable antenna (MA), beyond diagonal recon-
figurable intelligent surface (BD-RIS), beamforming.

I. INTRODUCTION

The evolution of wireless communication systems is driven
by the relentless demand for higher data rates, improved relia-
bility, and enhanced spectral efficiency (SE) [1], [2]. Over the
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past decades, multiple-input multiple-output (MIMO) technol-
ogy has been a cornerstone of this progression, leveraging spa-
tial diversity and multiplexing gains to significantly enhance
both system capacity and reliability. However, as wireless
networks scale to accommodate massive connectivity, such
as in Internet-of-Things (IoT) ecosystems and dense urban
environments, traditional MIMO architectures face substantial
challenges. These include prohibitive computational complex-
ity, excessive communication overhead, and limited scalability,
particularly in large-scale deployments supporting hundreds or
even thousands of users. Moreover, existing communication
systems are unable to exploit the spatial diversity of wireless
channels, i.e., the spatial degrees of freedom (DoF), within
a given service, thus failing to guarantee stringent quality of
service (QoS) requirements.

To address these limitations, reconfigurable intelligent sur-
faces (RISs) have emerged as a promising technology. Specifi-
cally, an RIS is a quasi-passive surface composed of reconfig-
urable elements that can proactively manipulate the wireless
propagation environment by delibrately reflecting or refracting
signals, thereby extending coverage and enhancing capacity
[3], [4]. Traditional RIS implementation, however, are often
limited by their diagonal phase-shift matrices, which restrict
their ability to achieve optimal interference suppression.

In response, beyond-diagonal RIS (BD-RIS) has recently
emerged as a promising technology to address this limitation
by allowing non-diagonal scattering matrices, enabling higher
flexibility and efficient control over the wireless channel,
particularly in practical scenarios with strong mutual cou-
pling among elements [5]–[8]. Such flexibility is crucial for
achieving improved performance gains in complex propa-
gation environments. It is widely recognized that BD-RIS
can be classified into three primary architectures, balancing
performance-hardware complexity trade-off: single-connected,
group-connected, and fully-connected [5]. Specifically, the
single-connected architecture, widely studied in prior works,
e.g., [5], [9], offers simplicity in design but yields modest
performance improvements. In contrast, the fully-connected
architecture delivers maximal flexibility and optimization po-
tential, although at the expense of higher complexity and strin-
gent control requirements. Meanwhile, the group-connected
architecture strikes a pragmatic balance by partitioning RIS
elements into interconnected groups, achieving substantial
performance gains while maintaining tractable implementa-
tion complexity. Indeed, recent research on BD-RIS centers
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on three interrelated themes: accurate electromagnetic mod-
eling [10], hardware-efficient architecture design, and joint
transceiver-RIS optimization [6], [11], [12]. For instance, var-
ious studies have introduced general BD-RIS communication
models that unify diverse operating modes and architectural
variants, developing computationally efficient algorithms to
jointly optimize transmit precoders and BD-RIS phase shift
matrices for maximizing sum-rates in communication sys-
tems. However, conventional BD-RIS-enabled MIMO systems
typically employ fixed-position antenna (FPA) arrays. This
immobility prevents the transceiver from full exploiting the
continuous spatial DoFs in ultimately constraining attainable
spatial diversity and multiplexing gains.

Recently, the emerging concept of movable antennas (MAs)
has been introduced as a ground-breaking approach to over-
coming the inherent limitations of FPA systems [13]–[18].
Specifically, by allowing physical antenna repositioning within
a constrained space, MAs introduce a novel dimension of
adaptability, facilitating on-the-fly optimization of their place-
ment in response to real-time channel conditions [19]–[21].
As a result, it can dynamically exploit spatial variations in the
wireless medium, offering potential improvements in channel
capacity, interference mitigation, and received signal power.
Moreover, the six-dimensional movable antenna (6DMA) sig-
nificantly expands upon conventional MA capabilities by en-
abling adjustments in both three-dimensional (3D) position
and 3D rotation [22], [23]. The integration of MA, fluid
antenna (FA), and 6DMA into wireless systems has demon-
strated substantial performance improvements across diverse
application scenarios. For example, [13] proposed a field-
response channel model to evaluate MA versus FPA system
performance in both deterministic and statistical channels.
Their findings highlighted the MA-aided system’s significant
advantages in increasing receive power and reducing outage
probability. Further studies in [24] and [25] explored chan-
nel estimation for MA-aided systems leveraging compressive
sensing and maximum likelihood estimation (MLE) methods,
respectively. However, the practical deployment of MAs also
introduces various hardware challenges, such as the need for
reliable and power-efficient mechanical actuation systems and
adaptive channel estimation techniques that account for an-
tenna positions [13], [24]. In this paper, we explore a BD-RIS-
aided MA system. The motivation behind integrating these two
technologies lies in their complementary strengths, enabling a
powerful two-stage channel optimization. Specifically, MAs
at the transmitter can dynamically adjust their positions to
optimize the BS-RIS channel link, for instance, by maximizing
the signal power incident upon the RIS. Subsequently, the
BD-RIS leverages its superior and flexible signal reflection
capabilities, to further effectively manipulate this enhanced
incident signal. This synergy significantly improves the RIS-
user link quality, resulting in stronger desired signals and
more effective a suppression of interference for multiple users.
Furthermore, despite the individual merits of BD-RIS and
MA technologies, their joint deployment in large-scale MIMO
systems also presents a new set of optimization challenges.
First, to mitigate antenna coupling, MA introduces intricate
constraints on the minimum separation distance. As a result,

the feasible set of MA positions is obtained by excluding
invalid areas on the antenna panel that violate this constraint,
leading to a more complex solution space than those in
conventional wireless resource allocation problems. Moreover,
the non-convex nature of these distance constraints, coupled
with their interdependence, prevents them from being address
individually.

On the other hand, traditional centralized optimization
frameworks, which rely on solving high-dimensional, non-
convex problems, are computationally prohibitive and lack the
scalability required for such systems. Fortunately, distributed
optimization methods [26], [27] have emerged as a scalable
and efficient alternative to centralized approaches in wireless
communications, overcoming the computational bottlenecks
associated with solving high-dimensional non-convex prob-
lems. Unlike centralized methods that require aggregating
global channel state information (CSI), distributed frameworks
enable parallel processing, making them particularly suitable
for large-scale systems. Prominent techniques in this domain
include dual decomposition and alternating direction method
of multipliers (ADMM) variants, which have proven effective
for tasks such as multi-cell coordinated beamforming [28],
[29]. Among these, the asynchronous ADMM (AS-ADMM)
framework stands out due to its unique advantage: it allows
immediate updates upon receiving partial server responses,
thus enhancing both fault tolerance and computational effi-
ciency by eliminating synchronization delays [30]. Crucially,
AS-ADMM also maintains theoretical convergence guarantees
even for non-convex problems under mild conditions. In
particular, some asynchronous distributed algorithms employ
scaled gradient projection or primal decomposition [31], [32],
but their application to BD-RIS-aided MA communication
systems remains still a largely open issue. To the best of our
knowledge, this work is an initial endeavor to establish an
asynchronous distributed optimization framework for BD-RIS-
aided MA communication systems.

This paper addresses the aforementioned challenges by
proposing an AS-ADMM framework, tailored to MA-assisted
BD-RIS-aided MIMO systems. Our proposed approach max-
imizes the sum rate while effectively ensuring scalability and
computational efficiency. The primary contributions of our
work are summarized below:

• First, we transform the intractable BD-RIS-aided MA
sum-rate maximization problem into a tractable formula-
tion by jointly applying the Lagrangian dual and quadratic
transform methods. Subsequently, we develop an efficient
alternating optimization algorithm with closed-form up-
dates for all auxiliary variables. To handle tightly coupled
MA positions, we employ a geometry-based iterative
optimization approach that alternately fixes all but one
antenna position to derive a suboptimal yet effective
solution. The proposed algorithm avoids conservative ap-
proximations of the feasible set, ensuring no performance
loss due to its reduced solution space.

• To independently optimize the beamformer for each user,
we exploit the above optimization strategy as a foundation
to develop a novel distributed framework based on asyn-
chronous ADMM algorithm. The proposed distributed
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Fig. 1: A BD-RIS-aided movable antenna communication
system.

framework efficiently addresses the reformulated problem
via semi-closed-form solutions for both the master and
worker updates. As a result, the AS-ADMM framework
substantially lowers per-iteration computational complex-
ity, rendering it well-suited for large-scale systems.

• Numerical results confirm that MA-enhanced BD-RIS
systems achieve superior performance to FPA-based sys-
tems. Specifically, MAs can effectively reduce user chan-
nel correlation, thus mitigating multi-user interference.
Additionally, dynamic antenna repositioning helps har-
ness multipath effects associated with channel fading
for achieving channel gain. Furthermore, our proposed
asynchronous distributed beamforming optimization algo-
rithm based on AS-ADMM can closely approach the per-
formance of synchronous algorithms, while significantly
improving computational efficiency.

The remainder of this paper is organized as follows. Sec-
tion II introduces the BD-RIS-aided MA system model and
problem formulation. Section III describes the centralized
beamforming algorithm in BD-RIS-aided MA systems. In
Section IV, we extend the centralized beamforming design to a
distributed framework. Section V analyzes the convergence of
the proposed algorithm. In Section VI, we provide simulation
results to validate the effectiveness of the proposed optimiza-
tion framework. Finally, in Section VII, we draw conclusions
for this paper.

Notations: Boldface lowercase a and uppercase letters A
represent vectors and matrices, respectively. The operations
A∗, AT , and AH denote the conjugate, transpose, and con-
jugate transpose (Hermitian) of the matrix A, respectively.
The l2-norm of a vector a is denoted by ∥a∥2, while the
Frobenius norm for matrices is represented as ∥A∥F . The sets
of P × Q complex and real matrices are denoted by CP×Q

and RP×Q, respectively. The operator Re[·] refers to the real
part of a complex number or variable, while E[·] represents
the expectation operator. The symbols ∇a(·) and Proj(·)
indicate the gradient operator with respect to the variable a
and projection operator, respectively. CN

(
0, σ2

)
denotes the

complex normal distribution with zero mean and variance σ2.
⊙ and ⊗ represent Hadamard product and Kronecker product,
respectively. diag (a) denotes a diagonal matrix whose i-th
diagonal element corresponds to the i-th entry of vector a.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider a BD-RIS-aided mul-
tiuser downlink MISO system comprising a base station
(BS) equipped with M movable antennas indexed as M =
{1, · · · ,M}, K single-antenna users indexed as K =
{1, · · · ,K}, and a BD-RIS with N passive reflecting el-
ements. We assume that the direct links between the BS
and users are blocked, leaving only BS-RIS-user propagation
paths1. The effectiveness of MA technology hinges on the
dynamic repositioning of a small number of antennas [14],
[34], to establish favorable propagation conditions.

Specifically, let us define r̃ = [r1, r2, . . . , rM ] ∈ R2×M

as the positions of MAs at the BS, where rm = [xm, ym]T ,
m ∈ M, represents the two-dimensional (2D) coordinates of
the m-th MA. The array response vector of the MA array can
be given by

a (θn,l, ϕn,l, r̃)

=
[
ej

2π
λ (ϕn,lx1+θn,ly1), · · · , ej 2π

λ (ϕn,lxM+θn,lyM )
]T
,

(1)

where variables θn,l ≜ cos (ϑn,l) and ϕn,l ≜
sin (φn,l) sin (ϑn,l) represent the direction of arrivals
(DoAs) from the n-th element of the BD-RIS via the l-th
path. Then, the channel2 between the BS and the n-th element
of the BD-RIS is expressed as [35]

gn (r̃) =

√
1

L

L∑
l=1

ρn,la (θn,l, ϕn,l, r̃) ∈ CM×1, (2)

where ρn,l ∈ C represents the complex gain of the l-th path in
the channel for the n-th BD-RIS element and L denotes the
total number of resolvable spatial channel paths. Therefore,
the channel of the transmit MAs for all N BD-RIS elements
is given by

G(r̃) ≜ [g1 (r̃) ,g2 (r̃) , . . . ,gN (r̃)]
T ∈ CN×M . (3)

Remark 1. The effectiveness of MA technology primarily
hinges on the dynamic repositioning of a small number of
antennas [14], [34], to establish favorable propagation con-
ditions. It is worth noting that MAs operating within a confined
region C primarily influence the channel’s small-scale fading
by exploiting multipath effects.

Then, we define the channel between user k and BD-RIS as
hk ∈ CN×1, k ∈ K. Let s ≜ [s1, . . . , sK ]T ∈ CK×1 represent
the transmit symbol vector, with sk ∼ CN (0, 1), E{ssH} =
IK . At the BS, these symbols are precoded adopting the matrix
W ≜ [w1, . . . ,wK ] ∈ CM×K , where wk ∈ CM×1 is the
precoding vector for user k, k ∈ K. The passive beamforming
matrix of the BD-RIS is denoted as Θ ∈ CN×N . This paper
considers all three BD-RIS categories, i.e., single-, group-, and
fully-connected. Specifically, for a single-connected RIS, the

1For simplicity, we omit the consideration of direct links, although our
proposed algorithms are still applicable when direct links exist, as commonly
assumed in literature, e.g., [5], [11], [33].

2CSI is derived from channel estimation algorithms [24], [25]. For simplic-
ity, we assume perfect CSI in this work.
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reconfigurable impedance network isolates each port, thereby
satisfying the following constraint:

X1 =
{
Θ | Θ = diag

(
ejα1 , ejα2 , · · · , ejαN

)}
, (4)

where αn ∈ [0, 2π) represents the phase shift angle. Further-
more, the fully-connected BD-RIS comprises a reconfigurable
impedance network, where each port is interconnected with the
others via a reconfigurable reactance. As a result, the scattering
matrix Θ of the fully-connected BD-RIS must satisfy the
following constraint

X2 =
{
Θ | Θ = ΘT ,ΘΘH = I

}
. (5)

For the group-connected architecture, the N BD-RIS elements
are divided into G groups, each containing Ng elements. In
particular, elements within the same group are fully-connected
with each other but disconnected from elements in other
groups. As a result, the scattering matrix adopts the structure
of a block diagonal matrix, i.e.,

X3=
{
Θ |Θ=diag (Θ1,· · ·,ΘG),Θ

H
g Θg=I,Θg=ΘT

g ,∀g
}
,

(6)
where Θg, g ∈ {1, · · · , G} are complex-valued symmetric
unitary matrices.

The precoded symbols are then up-converted to the radio
frequency (RF) domain via M RF chains. After propagation
through the RIS-aided channels, the signals are corrupted
by additive white Gaussian noise (AWGN). As a result, the
received signal at user k can be written as

yk = hH
k ΘG (r̃)

∑
k∈K

wksk + nk, (7)

where nk ∼ CN
(
0, σ2

k

)
denotes the Gaussian noise and σ2

k

is the corresponding noise power. Furthermore, the signal-
to-interference-plus-noise ratio (SINR) for each user can be
expressed as

γk =

∣∣∣h̃k (r̃)
H
wk

∣∣∣2∑
i∈K,i̸=k

∣∣∣h̃k (r̃)
H
wi

∣∣∣2 + σ2
k

(8)

and we define h̃k (r̃) ≜
(
hH
k ΘG(r̃)

)H
. Accordingly, the

optimization problem is mathematically formulated as

max
{W,r̃,Θ}

∑
k∈K

log2 (1 + γk)

s.t. C1 :
∑
k∈K

∥wk∥22 ≤ Pmax,

C2 : rm ∈ C, ∀m ∈M,

C3 : ∥rm − rl∥2 ≥ D, ∀m, l ∈M, m ̸= l,

C4 : Θ ∈ Xi, ∀i ∈ {1, 2, 3},

(9)

where C represents the MA transmit region and D is the
minimum antenna separation.

In general, it is highly challenging to acquire the globally
optimal solution to problem (9), since the objective function
is non-convex with tightly coupled optimization variables.
Furthermore, the introduction of the MA’s position variables
{rm}m∈M exacerbates the complexity, as the resulting cou-
pled non-convex constraints C3 further amplify the problem.

To address this challenge, the following subsections first
transform problem (9) into a more tractable block optimization
using fractional programming theory, followed by an iterative
approach to handle each block.

III. CENTRALIZED BEAMFORMING ALGORITHM

A. Equivalent Transformation

To begin with, we address the original sum rate maximiza-
tion problem in a centralized manner. Specifically, we first
transform problem (9) into a tractable form by applying the
Lagrangian dual transform and the quadratic transform [36],
[37]. Based on this, we have the following Proposition 1.

Proposition 1. By introducing auxiliary optimization vari-
ables ι = [ι1, · · · , ιK ]

T ∈ RK and τ = [τ1, · · · , τK ]
T ∈ CK ,

the original problem in (9) can be equivalently transformed
into

min
W,r̃,Θ,ι,τ

fa (W, r̃,Θ, ι, τ )

s.t. C1,C2,C3,C4,
(10)

where

fa (W, r̃,Θ, ι, τ ) =
∑
k∈K

(
− log(1 + ιk) + ιk

−2
√
1 + ιkℜ

{
h̃k(r̃)

H
wkτ

∗
k

}
+|τk|2 (

∑
i∈K
|h̃k(r̃)

Hwi|2+σ2
k)
)
.

(11)

Proof: Please see Appendix A.
After introducing two auxiliary variables ι and τ , we

address the equivalent problem (10) using the block coordinate
descent (BCD) method. This approach iteratively optimizes
each block while keeping the others fixed. Below, we detail
the optimization process for each block.

B. Auxiliary Vectors: Blocks ι and τ

Given fixed (W, r̃,Θ), the subproblem with respect
to ιk and τk becomes an unconstrained convex opti-
mization problem. Its solution can be derived by setting
∂fa (W, r̃,Θ, ι, τ ) /∂ιk = 0 and ∂fa (W, r̃,Θ, ι, τ ) /∂τk =
0, ∀k ∈ K. The optimal solutions for the auxiliary variables
ιk and τk, ∀k ∈ K, are then given by

ιk =

∣∣∣h̃k (r̃)
H
wk

∣∣∣2∑
i∈K,i̸=k

∣∣∣h̃k (r̃)
H
wi

∣∣∣2 + σ2
k

(12)

and

τk =

√
1 + ιkh̃k (r̃)

H
wk∑

i∈K

∣∣∣h̃k (r̃)
H
wi

∣∣∣2 + σ2
k

, (13)

respectively.
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C. Transmit Precoder: Block W

With a given set (r̃,Θ, ι, τ ), the sub-problem with respect
to W is given by

min
W

∑
k∈K

(
− 2ℜ{τ̃kh̃k (r̃)

H
wk}+ |τk|2

∑
i∈K
|h̃k(r̃)

Hwi|2
)

s.t. C1,
(14)

where τ̃k =
√
1 + ιkτk. Since both the objective function and

the constraint of problem (14) are convex, classical optimiza-
tion methods can be applied to find its optimal solution. To this
end, we adopt the Lagrange multiplier method via introducing
a non-negative multiplier λ ≥ 0 for the power constraint C1.
By checking the first-order optimality condition, the optimal
precoder wk is obtained as

w⋆
k =

(∑
i∈K

hi(r̃)hi(r̃)
H + λ⋆IN

)−1 ×
√
1 + ιkhk(r̃), (15)

where λ⋆ can be efficiently determined via a simple bisection
search, and hk(r̃) ≜ τkh̃k(r̃), ∀k ∈ K.

D. BD-RIS Matrix: Block Θ

When (r̃,W, ι, τ ) are determined, the sub-problem with
respect to Θ is written as

min
Θ

∑
k∈K

(
− 2ℜ{τ̃∗khH

k ΘG(r̃)wk}+|τk|2
∑
i∈K
|hH

k ΘG(r̃)wi|2
)

s.t. C4.
(16)

We propose a symmetric unity projection method for handling
problem (16), which consists of the following two steps. First,
we relax the non-convex constraints into a convex set and solve
the resulting relaxed problem. Second, we project the relaxed
solution back onto the feasible points within the non-convex
sets C4.

Relaxed solution of (16): To derive a practice solution while
maintaining a nearly optimal performance, we propose the
following solution based on the gradient decent approach. The
relaxed problem becomes

min
Θ

∑
k∈K

(
− 2ℜ{τ̃∗khH

k ΘG(r̃)wk}+|τk|2
∑
i∈K
|hH

k ΘG(r̃)wi|2
)

s.t. Θ ∈M,
(17)

whereM is a convex sphere set satisfying
{
Θ | ∥Θ∥2F ≤ N

}
.

The gradient of the objective function is computed as

∇Θfa(Θ)

=
∑
k∈K

(
−2τ̃khkw

H
kG(r̃)H+2|τk|2

∑
i∈K

hkh
H
kΘG(r̃)wiw

H
i G(r̃)H

)
(18)

and set it equals to 0 and project to M. Consequently, the
low-complexity solution to (17) is Θ =

√
N

∥Θ̂∥F
Θ̂, where Θ̂ is

given by

Θ̂ =mat

((
(
∑
i∈K

G(r̃)wiw
H
i G(r̃)H)T ⊗ (

∑
k∈K

|τk|2 hkh
H
k )
)−1

vec(
∑
k∈K

τ̃khkw
H
k G(r̃)H)

)
.

(19)

While the relaxed solutions provide valuable insights, they
generally fail to satisfy the constraints of any feasible set Xi

for i ∈ {1, 2, 3}. Therefore, we first develop a projection
method to map the relaxed solution onto the feasible set X2,
ensuring compliance with the symmetric unitary requirements.
Subsequently, we generalize this approach to handle cases for
both X1 and X3.

Symmetric Unitary Projection [6]: Having established a
feasible solution to problem (17), we now address problem
(16) by projecting Θ onto X2. To facilitate this projection, we
define the symmetric unitary projection for a square matrix
A1 as follows:

Projsym (A1) ≜
1

2

(
A1 +AT

1

)
= arg min

B=BT
∥A1 −B∥2F .

(20)
Furthermore, for a square matrix A2, we define the unitary
projection as

Projuni (A2) ≜ UVH = arg min
BBH=I

∥A2 −B∥2F , (21)

where U, V are unitary matrices obtained via the singular
value decomposition (SVD) of A2, i.e., A2 = USVH , and S
is a diagonal matrix.

Suppose that rank
(
Projsym (A)

)
= R, with its singular

value decomposition given by Projsym (A) = USVH . We
partition the matrices U and V as U = [UR,UN−R] and V =
[VR,VN−R], respectively. The symmetric unitary projection
is thus then defined as

Projsymuni(A) = Projuni(Projsym(A)) ≜ ÛVH , (22)

where Û ≜ [UR,V
∗
N−R]. Note that if Projsym(A) is rank-

deficient, ÛVH represents one of the unitary projections
for Projsym(A). The proposed symmetric unitary projection
indeed yields the closest point projection, as formalized in the
following Proposition 2.

Proposition 2. For a square matrix A ∈ CN×N , we have

Projsymuni(A) = arg min
B∈X2

∥A−B∥2F . (23)

Proof: See Appendix B.
Using Proposition 2, we derive a closed-form for the pas-

sive beamforming solution in problem (16) when Θ ∈ X2,
expressed as

Θ = Projsymuni(Θ̂). (24)

Next, we extend the projection operation to Θ ∈ X1

and Θ ∈ X3. For the group-connected case, we first block-
diagonalize it and then apply symmetric unitary projection in
each block. The block-diagonalization operation for a given
square matrix A is defined as

blkdiag(A) = diag{1, . . . ,1} ⊙A, (25)

where 1 is an Ng-dimensional square matrix filled with ones.
Let diag{X1, . . . ,XG} = blkdiag(Θ̂). The solution for the
passive beamforming matrix satisfying the constraint set X3 is

Θ = diag{Projsymuni(X1), . . . ,Projsymuni(XG)}. (26)

For a single-connected RIS satisfying Θ ∈ X3, which is
a special case of the group-connected RIS with the number
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of user groups equals to the number of RIS elements (i.e.,
G = N ), equation (26) simplifies as

Θ = diag{ej∠x1 , . . . , ej∠xN }, (27)

where Xn, simplifies to a scalar xn, ∀n ∈ {1, . . . , N}. j is the
imaginary unit, and ∠xn represents the corresponding phase
angle.

E. Antenna Position Optimization: Block r̃

This subsection focuses on optimizing the antenna position
r̃ with fixed (W,Θ, ι, τ ). This subproblem is given by

min
r̃

∑
k∈K

(
− 2ℜ{τ̃∗k h̃ (r̃)

H
wk}+ |τk|2

∑
i∈K
|h̃ (r̃)

H
wi|2

)
s.t. C2,C3.

(28)
To address the non-convex constraint C3 in (28), Using
variable splitting, we define auxiliary variables {bm}Mm=1 =
{rm}Mm=1. By substituting {rm}Mm=1 in (28) with {bm}Mm=1

and augmenting a penalty term ϱ
∑M

m=1 ∥rm−bm∥22, problem
(28) is reformulated as two subproblems.

1) Subproblem with respect to r̃:

min
r̃

∑
k∈K

(
− 2ℜ{τ̃∗k h̃ (r̃)

H
wk}+ |τk|2

∑
i∈K
|h̃ (r̃)

H
wi|2

)
+ ϱ

M∑
m=1

∥rm − bm∥22

s.t. C2,
(29)

where ϱ > 0 is the penaty factor and it is known that as
ϱ → ∞, the optimal solutions of (29) and (28) are identical.
Since the objective function (29) is differentiable with respect
to {rm}Mm=1, we apply the projected gradient approach [38],
[39] to optimize {rm}Mm=1, i.e.,

rm = ProjC {rm − η∇rmfa} , (30)

where η is the step-size, and the projection is given by
ProjC(x) ≜ min (max (x,xmin) ,xmax) with xmin and xmax

denoting the lower left and upper right coordinates of C.
2) Subproblem with respect to {bm}Mm=1: Since the auxil-

iary variables {bm}Mm=1 appear only in the penalty term, the
corresponding subproblem can be expressed as

min
{bm}M

m=1

M∑
m=1

∥bm − rm∥22

s.t. ∥bm − bl∥2 ≥ D,∀m, l = 1, 2, . . . ,M, m ̸= l.
(31)

When {bl}l ̸=m is fixed, the m-th subproblem of (31) is given
by

min
bm

∥bm − rm∥22
s.t. ∥bm − bl∥2 ≥ D, ∀l = 1, 2, . . . ,M, l ̸= m.

(32)

To systematically address problem (32), we first introduce the
following notations for clarity. Let A represent the set of all
l that satisfy the constraint ∥rm − bl∥2 < D. ϖl denotes the
circle centered at bl with radius D. The set Pl includes the

Algorithm 1 Proposed Penalty-BCD Algorithm for Handling
Problem (9)

1: Initialize the channel parameters and optimization vari-
ables.

2: repeat
3: Update the transmit precoder W based on (15).
4: Update the Θ based on (24), (26), or (27) utilizing the

projected gradient-based methods.
5: Update {rm}m∈M according to (30) utilizing the pro-

jected gradient-based methods.
6: repeat
7: for m = 1, . . . ,M do
8: Compute bm via (32).
9: end for

10: until the updated value satisfying the convergence
threshold.

11: Increase the penalty factor ϱ.
12: until the updated value satisfying the convergence thresh-

old.

intersection points of ϖl with other circles (excluding ϖm),
where these points must also satisfy constraint (32). Similarly,
the set Ql comprises the intersection points of ϖl with the line
passing through bl and rm, again satisfying constraint (32).
We then analyze the optimal solution for b∗

m in problem (32)
by considering three distinct cases:

(a) A = ∅: In this case, the optimal b∗
m is b∗

m = rm, as
illustrated in Fig. 2(a).

(b) |A| = 1: We first identify the unique bl that satisfies
∥rm − bl∥2 < D. The optimal b∗

m then belongs to the
set Pl∪Ql. As shown in Figs. 2(b) and 2(c), the optimal
b∗
m is given by

b∗
m = arg min

bm∈Pl∪Ql

∥bm − rm∥2, (33)

where Pl and Ql can be computed using geometric
methods.

(c) |A| ≥ 2: As depicted in Fig. 2(d), the optimal b∗
m is

determined by

b∗
m = argmin

bm

∥bm − rm∥2, (34)

subject to the relevant constraints.
Algorithm 1 provides a comprehensive outline of the entire

procedure for handling problem (9).

Remark 2. We can obtain stationary points for the subprob-
lems concerning {rm}m∈M and {bm}m∈M. Moreover, once
a stationary point is reached for subproblem (16), Algorithm 1
is guaranteed to converge. The proposed optimization algo-
rithm offers two key advantages. Firstly, it transforms the
non-convex antenna distance constraints into a subproblem
involving auxiliary variables {bm}m∈M, which can be op-
timized without resorting to any approximations. Secondly,
the algorithm integrates conventional algorithms exploited in
FPA systems, thereby streamlining the optimization problem
associated with MA.
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(a) (b)

(c) (d)

Fig. 2: For m = 1 and M = 4, and the blue triangular
points represent the coordinates of b⋆

1. The orange and red
lines indicate the distance between r1 and b⋆

1 and the minimal
distance between r1 and b⋆

1, respectively. Illustrations: (a)
Case a; (b) and (c) Case b; (d) Case c.

IV. DISTRIBUTED BEAMFORMING ALGORITHM

In this section, the focus now shifts toward distributed
beamforming algorithms. Unlike the centralized approach in
Section III, distributed implementations eliminate the need
for aggregating all CSI at a single point, thereby reducing
backhaul information exchange and enhancing robustness in
time-varying scenarios. We first present the distributed ADMM
[40] for solving problem (9). Furthermore, to achieve more
efficient collaboration between master and workers, we further
extend the synchronous ADMM algorithm to an asynchronous
ADMM algorithm, inspired by [32], [37], [41].

A. S-ADMM Algorithm

We model the distributed system such that the user devices
act as worker nodes, with the BS serving as the master node.
The optimization process begins at the BS, which determines
optimal antenna positions, followed by individual users com-
puting their respective beamforming matrices and RIS phase
configurations. We reformulate problem (9) in consensus form
as

min
{B,{Ak}k∈K}

∑
k∈K

fk(Ak)

s.t. C5 : Wk = W,∀k ∈ K,
C6 : Θk = Θ,∀k ∈ K,

(35)

where Ak = {Wk,Θk, ιk, τk} and B = {W,Θ, r̃ |
(C1,C2,C3,C4)}. The objective function fk(Ak) can be

defined as

fk (Ak) =− log(1 + ιk) + ιk − 2
√
1 + ιkℜ{h̃k (r̃)

H
wkτ

∗
k}

+ |τk|2 (
∑
i∈K
|h̃k(r̃)

Hwi|2+σ2
k).

(36)
Based on the ADMM framework, the augmented Lagrangian
function for problem (35) incorporates the original objective
function along with the dual and penalty terms as follows [40]

L
(
{Ak,Zk,Uk}k∈K ,B

)
=
∑
k∈K

fk (Ak)−
∑
k∈K

2ℜ
{
Tr
(
ZH

k (Wk −W)
)}

+
∑
k∈K

ρ ∥Wk −W∥2F −
∑
k∈K

2ℜ
{
Tr
(
UH

k (Θk −Θ)
)}

+
∑
k∈K

ρ ∥Θk −Θ∥2F ,

(37)
where {Zk,Uk} represent dual variables for the consensus
constraints, with ρ > 0 as the penalty parameter.

The algorithm updates local variables first in each iteration,
keeping global variables fixed. First, problem (35) can be
solved distributedly at each user k using the ADMM

min
Ak

fk (Ak)− 2ℜ
{
Tr
(
ZH

k (Wk −W)
)}

+ ρ ∥Wk −W∥2F

− 2ℜ
{
Tr
(
UH

k (Θk −Θ)
)}

+ ρ ∥Θk −Θ∥2F .
(38)

We solve the k-th subproblem (38) using an efficient alternat-
ing optimization (AO) procedure. Although jointly non-convex
in Ak due to strong variable coupling in the objective function,
the problem is convex with respect to each individual variable
when others are fixed. The Wk is updated according to

Wk = argmin
Wk

Tr
(
WH

k PkWk

)
− 2ℜ

{
Tr
(
WH

k Qk

)}
,

(39)
where Pk = ρIM + |τk|2 h̃k (r̃) h̃k (r̃)

H , Qk = Fk + ρW +
Zk, Fk = [0M×k−1,

√
1 + ιkτkh̃k(r̃),0M×K−k]. Then, the

optimal solution to the subproblem (39) is derived in the closed
forms as W⋆

k = (Pk)
−1Qk.

For the case Θk ∈ X1, we assume that ψk = diag (Θk),
∀k ∈ K, the subproblem for ψk can be expressed as [42]

ψk = argmin
ψk

ψH
k Dkψk − 2ℜ

{
dH
k ψk

}
, (40)

where

Dk= |τk|2diag (hk)G (r̃)
∗
W∗

kW
T
k G (r̃)

T
diag

(
hH
k

)
+ρIM

(41)
and

dk = ρψ + diag (Uk) +
√
1 + ιkτ

∗
k diag (hk)G (r̃)

∗
w∗

k,k.
(42)

The suboptimal solution of (40) is ψ⋆
k = (Dk)

−1
dk. Next,

we extend the solution (19) to address problem (40) when
Θk ∈ X2. The subproblem for Θk is

Θk =argmin
Θk

−2
√
1+ ιkℜ

{
τ∗kh

H
k ΘkG (r̃)wk,k

}
+ |τk|2 (

∑
i∈K
|hH

k ΘkG (r̃)wi,k|2 + σ2
k)

− 2ℜ
{
UH

k (Θ−Θk)
}
+ ρ ∥Θ−Θk∥22 .

(43)
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By setting the derivative of (43) to 0, we obtain the stationary
point

Θk =mat

((
|τk|2

(
G (r̃)wi,kw

H
i,kG (r̃)

H
)T
⊗
∑
i∈K

hkh
H
k +ρI

)−1

vec
(√

1 + ιk · τ∗khkw
H
k,kG (r̃)

H −Uk + ρΘ
))

.

(44)
Then, during every ADMM time step, the dual variables Zk,
Uk are updated as

Zk = Zk − ρ(Wk −W) (45)

and
Uk = Uk − ρ(Θk −Θ). (46)

When other variables are fixed, the subproblem related to ι
and τ is characterized as an unconstrained convex optimization
problem. Then the optimal solutions is obtained by setting
∂fk (Ak) /∂ιk = 0 and ∂fk (Ak) /∂τk = 0, i.e.,

ιk =
4(√

4 +
∣∣∣ℜ{wH

k,kh̃k(r̃)τk

}∣∣∣2 −ℜ{wH
k,kh̃k(r̃)τk

})2 − 1,

(47)

τk =

√
1 + ιk h̃k(r̃)

Hwk,k∑
i∈K

∣∣∣h̃k(r̃)Hwi,k

∣∣∣2 + σ2
k

. (48)

Using the first-order derivative and the Cauchy-Schwarz
inequality, we can derive the globally optimal solutions for
W and Θ in closed form, i.e.,

W =

∑
k∈K(ρWk − Zk)

ρK
IW, (49)

where IW represents the normalization factor, i.e., IW =√
Pmax

∥∑k∈K(ρWk−Zk)/ρK∥
F

if
∥∥∑

k∈K(ρWk − Zk)/ρK
∥∥
F

>

Pmax, and IW = 1 otherwise. From (49), the weight vector of
each user is aggregated at the BS to form its precoding vector.
Similarly, the phase matrix Θ can be updated as

Θ̂ =

∑
k∈K (ρΘk −Uk)

ρK
. (50)

Then, we perform a projection operation to satisfy the BD-
RIS constraints as according to Section III-D, i.e., Θ =
Projsymuni(Θ̂).

B. Proposed AS-ADMM Algorithm

As illustrated in Fig. 3(a), the synchronous execution pro-
cess described previously reveals that the master node and
faster worker nodes frequently experience significant idle peri-
ods. As a result, the available parallel computational resources
are often underutilized. Based on the concept of asynchronous
signal processing, the BS operates independently without
waiting for responses from all user nodes. Instead, as shown
in Fig. 3(b), the BS updates immediately upon receiving input
from a subset of users. This approach effectively eliminates
idle time, improves robustness against failures, and signifi-
cantly enhances computational efficiency. Consequently, the

Iteration i=1 Iteration i=2 Iteration i=3

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9

BS (Master)

User 1 (Worker)

User 2 (Worker)

User 3 (Worker)

User 4 (Worker)

Computation and 

communication delay
Idle period

(a)

Computation and 

communication delay
Idle period

(b)

BS (Master)

User 1 (Worker)

User 2 (Worker)

User 3 (Worker)

User 4 (Worker)

Fig. 3: Example of how (a) synchronous and (b) asynchronous
ADMM algorithms affect the operations between BS and user
nodes in the system.

asynchronous design removes the requirement for synchro-
nization among worker nodes and eliminate the depending of
the master node on the slowest worker, ensuring continuous
and efficient resource utilization.

Inspired by this, we introduce an AS-ADMM algorithm
to facilitate more efficient collaboration between the BS and
users. As illustrated in Fig. 3, the BS updates the consensus
variables in B, while user k updates its local variables
{Ak,Zk,Uk}. To support an asynchronous distributed imple-
mentation, the BS and user k maintain independent clocks, tc
and tdk

, respectively. Without loss of generality, these clocks
start at zero and increment by 1 after each update of B and
{Ak,Zk,Uk}.

At clock tc, the BS updates B upon receiving the latest
{Ak,Zk,Uk} from at least Dmin users, denoted by the set
Dtc ⊂ K with size(Dtc) ≥ Dmin. The BS then broadcasts
the updated {W,Θ, r̃} to the users in Dtc for local updates.
To ensure the freshness of these updates across all users, a
bounded asynchronous delay τmax is assumed. This implies
that the latest {Ak,Zk,Uk} at each user k is at most τmax

clock cycles behind the BS’s clock, i.e.,

k ∈ Dtc ∪ Dtc−1 ∪ · · · ∪ Dtc−τmax+1. (51)

At the BS’s clock tc + 1, the updates are computed via{
W

(tc+1)
k ,Θ

(tc+1)
k ,Z

(tc+1)
k ,U

(tc+1)
k

}
=


{
Ŵk, Θ̂k, Ẑk, Ûk

}
k ∈ Dtc+1{

W
(tc)
k ,Θ

(tc)
k ,Z

(tc)
k ,U

(tc)
k

}
k /∈ Dtc+1

, ∀k ∈ K

(52)

W(tc+1) =

∑
k∈K(ρW

(tc+1)
k − Z

(tc+1)
k )

ρK
IW, (53)

Θ(tc+1) =

∑
k∈K(ρΘ

(tc+1)
k −U

(tc+1)
k )

ρK
, (54)
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Algorithm 2 Asynchronous Distributed ADMM for Tackling
Problem (35)

1: Algorithm of the Master:
2: Input: Initial

{
W(0),Θ(0), ρ(0)

}
, set clock tc = 0, and

initialize delays for all K users as τ1 = · · · = τK = 0.
3: repeat
4: Wait until receiving the up-to-date {Ŵk, Θ̂k, Ẑk, Ûk}

from each user k ∈ Dtc+1, where both size(Dtc) ≥ D
and τk ≤ τmax, ∀k ∈ K are required.

5: Compute
{
W

(tc+1)
k ,Θ

(tc+1)
k ,Z

(tc+1)
k ,U

(tc+1)
k

}
k∈K

based on (52).
6: Compute

{
W(tc+1),Θ(tc+1)

}
based on (53) and (54).

7: Set τk = τk + 1 for any user k /∈ Dtc+1.
8: Broadcast

{
W(tc+1),Θ(tc+1), ρ(tc+1)

}
to each user

k ∈ Dtc+1.
9: set tc ← tc + 1.

10: until a predefined stopping criterion is satisfied.
1: Algorithm of the k-th Worker:
2: Input: Initial variables
{W(0)

k ,Θ
(0)
k , τ

(0)
k , ι

(0)
k ,Z

(0)
k ,U

(0)
k }, clock tdk

= 0.
3: repeat
4: Wait until receiving the up-to-date {Ŵ, Θ̂} from the

BS.
5: Compute {W(tdk+1)

k ,Θ
(tdk+1)

k } according to (55).
6: Compute {Z(tdk+1)

k ,U
(tdk+1)

k } according to (56) and
(57).

7: Send {W(tdk+1)

k ,Θ
(tdk+1)

k ,Z
(tdk+1)

k ,U
(tdk+1)

k } to the
BS.

8: Set tdk
← tdk

+ 1.
9: until a predefined stopping criterion is satisfied.

where {Ŵk, Θ̂k, Ẑk, Ûk} in (52) represents the latest infor-
mation received from Dtc+1 user. At the local clock time
tdk

+1, the user k executes the AS-ADMM updates as follows:{
W

(tdk+1)

k ,Θ
(tdk+1)

k , ι
(tdk+1)

k , τ
(tdk+1)

k

}
= argmax

Ak

fk(Ak) + 2ℜ
{
Tr
(
WH

k Z
(tdk )

k +ΘH
k U

(tdk )

k

)}
− ρ

∥∥∥Wk − Ŵ
∥∥∥2
F
− ρ

∥∥∥Θk − Θ̂
∥∥∥2
F
, (55)

Z
(tdk+1)

k = Z
(tdk )

k − ρ(W(tdk+1)

k − Ŵ), (56)

U
(tdk+1)

k = U
(tdk )

k − ρ(Θ(tdk+1)

k − Θ̂). (57)

The closed-form solution for the variable update can be
found in Section IV-A. The overall AS-ADMM distributed
beamforming algorithm is presented in Algorithm 2.

Remark 3. While the consensus problem (35) has a higher
dimension than the original problem (9) due to the increase of
K, the proposed distributed AS-ADMM algorithm may require
more total iterations than the centralized approach. However,
solving problem (35) offers a key advantage: it enables each
user to perform computations locally, leveraging its own
information. This eliminates the substantial communication

overhead between the users and the BS, highlighting the AS-
ADMM algorithm’s scalability and flexibility.

V. CONVERGENCE AND COMPLEXITY ANALYSIS

The convergence conditions for the AS-ADMM algorithm,
established in [32], can be adapted to our framework as
follows:

1) The asynchronous updates from each user exhibit a
bounded delay; specifically, the communication delays
from each worker are upper-bounded.

2) For any {ιk, τk}, the objective functions are twice differ-
entiable with respect to Wk and Θk, and their gradients
are L-Lipschitz continuous.

3) The optimal value of the sum rate maximization problem
is finite.

Under these conditions, the sequence {{Ak}k∈K,B} pro-
duced by the AS-ADMM framework converges to the set of
stationary points of problem (35).

To demonstrate the convergence properties of the AS-
ADMM algorithm, we consider the single-connected BD-RIS.
In terms of assumption 1), a maximum asynchronous delay
τmax is assumed for each user. To demonstrate assumption 2),
we firstly know that the fk (Ak) is a quadratic function and
the gradients of fk (Ak) are respectively given by

∇ψk
f (Ak) =

√
1 + ιkτ

H
k ĜkWk1k − |τk|2 ĜkW

∗
kW

T
k h

∗
ψk
,

(58)

∇Wk
f (Ak) = Fψk

− |τk|2 hψk
hH
ψk

Wk, (59)

where

Ĝk = diag (hk)G
∗,1k = [01×k−1, 1,01×K−k]

T
,

hψk
= ĜT

kψ
∗
k,

Fψk
=
[
0N×k−1,

√
1 + ιkτkhψk

,0N×K−k

]
.

(60)

If fk (Ak) satisfies Lipschitz continuous gradient, there
must exist a constant L such that(
∥∇ψk

f(A 1
k )−∇ψk

f(A 2
k )∥22+∥∇Wk

f(A 1
k )−∇Wk

f(A 2
k )∥2F

) 1
2

≤ L
(
∥ψ1

k −ψ2
k∥22 + ∥W1

k −W2
k∥2F

) 1
2 ,

(61)
where A i

k =
{
Wi

k,ψ
i
k, ιk, τk

}
, i ∈ {1, 2}. We prove (61)

with inequalities for the gradient ∇ψk
f (Ak) as (62), where

equality 1) is obtained through auxiliary terms. Inequalities 2)
and 3) follow from the matrix norm bounds ∥a+b∥2 ≤ ∥a∥2+
∥b∥2 and ∥ABC∥F ≤ λmax(A)∥B∥Fλmax(C), respectively.
Additionally, for (63) we have λmax(AB) ≤ λmax(A)λmax(B).
For the gradient ∇Wk

f(ψk,Wk), we derive

∥∇Wk
f(A 1

k )−∇Wk
f(A 2

k )∥F
=
∥∥∥Fψ2

k
− Fψ1

k
− |τk|2hψ2

k
hH
ψ2

k
W2

k + |τk|2hψ1
k
hH
ψ1

k
W1

k

∥∥∥
F

≤ℓ3∥W2
k −W1

k∥F + ℓ4∥ψ2
k −ψ1

k∥2,
(64)

where the constants are defined as ℓ3 =√
1 + ιk|τk|λmax(Ĝk) + |τk|2λmax(Ĝ

∗
kW

2
k)λmax(hψ1

k
) +

|τk|2λmax(Ĝk)λmax(h
H
ψ2

k
W2

k), ℓ4 = |τk|2(
√
Nλmax(Ĝk))

2.
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∥∥∇ψk
f(A 1

k )−∇ψk
f(A 2

k )
∥∥
2

=
∥∥∥√1 + ιk|τk|2Ĝk(W

1
k −W2

k)1k + |τk|2Ĝk(W
1
k)

∗(W1
k)

Th∗
ψ1

k
+ |τk|2Ĝk(W

2
k)

∗(W2
k)

Th∗
ψ2

k

∥∥∥
2

1)
=
∥∥∥√1 + ιk|τk|2Ĝk(W

1
k −W2

k)1k + |τk|2Ĝk(W
1
k)

∗(W2
k −W1

k)
Th∗

ψ2
k
+ |τk|2Ĝk(W

2
k −W1

k)
∗(W2

k)
Th∗

ψ2
k

+|τk|2Ĝk(W
1
k)

∗(W1
k)

T Ĝk(ψ
2
k −ψ1

k)
∥∥∥
2

2)

≤
√
1 + ιk|τk|2

∥∥∥Ĝk(W
1
k −W2

k)1k

∥∥∥
2
+ |τk|2

∥∥∥Ĝk(W
1
k)

∗(W2
k −W1

k)
Th∗

ψ2
k

∥∥∥
2

+ |τk|2
∥∥∥Ĝk(W

2
k −W1

k)
∗(W2

k)
Th∗

ψ2
k

∥∥∥
2
+ |τk|2

∥∥∥Ĝk(W
1
k)

∗(W1
k)

T Ĝk(ψ
2
k −ψ1

k)
∥∥∥
2

3)

≤ L1
ψ

∥∥W1
k −W2

k

∥∥
F
+ L2

ψ

∥∥ψ2
k −ψ1

k

∥∥
2
≤ ℓ1

∥∥W1
k −W2

k

∥∥
F
+ ℓ2

∥∥ψ2
k −ψ1

k

∥∥
2
.

(62)

L1
ψ =

√
1 + ψk |τk|λmax

(
R̂k

)
+ |τk|2 λmax

(
Ĝk

(
W1

k

)∗)
λmax

(
h∗
ψ∗

k

)
+ |τk|2 λmax

(
Ĝk

)
λmax

((
W2

k

)T
h∗
ψ2

k

)
≤
√
1 + ψk |τk|λmax

(
Ĝk

)
+ 2 |τk|2

√
Pmaxλmax

(
Ĝk

)(
∥hk∥2 +

√
Nλmax

(
Ĝk

))
= ℓ1.

L2
ψ = |τk|2 λmax

(
Ĝk

(
W1

k

)∗ (
W1

k

)T
ĜH

k

)
≤ |τk|2 Pmaxλ

2
max

(
Ĝk

)
= ℓ2.

(63)

The derivation of (64) mirrors that of (62), with details
omitted for brevity. Substituting (62) and (64) into the left-
hand side of (61), we obtain:

∥∇ψk
f(A 1

k )−∇ψk
f(A 2

k )∥22 + ∥∇Wk
f(A 1

k )−∇Wk
f(A 2

k )∥2F
≤ (ℓ22 + ℓ24)∥ψ1

k −ψ2
k∥22 + (ℓ21 + ℓ23)∥W1

k −W2
k∥2F

+ 2(ℓ1ℓ2 + ℓ3ℓ4)∥ψ1
k −ψ2

k∥2∥ψ1
k −ψ2

k∥2
≤ L2

(
∥ψ1

k −ψ2
k∥22 + ∥W1

k −W2
k∥2F

)
,

(65)
where

L = max

{√
ℓ22 + ℓ24 + ℓ1ℓ2 + ℓ3ℓ4,√

ℓ21 + ℓ23 + ℓ1ℓ2 + ℓ3ℓ4

}
. (66)

Therefore, building on the above analysis, problem (35) is
proved to satisfy the three assumptions required for the AS-
ADMM convergence. The computational complexity of the
proposed AS-ADMM algorithm is evaluated against central-
ized schemes. In fact, the overall complexity of AS-ADMM
is primarily determined by the variable updates at each
worker. For instance, analyzing the per-iteration complexity
of worker k in problem (35), the closed-form updates for
Wk and Θk incur complexities of O(M3 + M2K + M2)
and O(N3 + 2NM + NM2 + (K + 1)N2), respectively.
In contrast, the per-iteration complexity of the AO-based
centralized scheme, i.e., Penalty-BCD algorithm, is O(M3 +
M2K+M2+N3+2KNM +KNM2+2KN2). Therefore,
the centralized scheme exhibits significantly higher complexity
compared to the AS-ADMM algorithm.

VI. SIMULATION RESULTS

This section presents numerical results demonstrating the
performance of our proposed AS-ADMM framework. The
system operates at a central carrier frequency of 3 GHz. The
BS is equipped with M = 4 antennas for serving K = 4
users. The BD-RIS consists of N = 16 elements. The channel
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Fig. 4: Average sum rate versus number of iterations of
centralized beamforming algorithms with M = 4, K = 4
and SNR = 10 dB.

between BD-RIS and the UEs is characterized by small-scale
Rayleigh fading and large-scale distance-dependent path loss.
The path loss model is expressed as ζ(d) = ζ0d

−γ , where
ζ0 = −30 dB represents the reference path loss at a distance of
1 meter, d is the link distance, and γ is the path loss exponent,
which is set to 2.2. Azimuth ϕn,l and elevation θn,l angles
drawn from [−1, 1], ∀n, l. The transmit region for the MAs,
i.e., C, is set as an A × A square area, the minimum and
maximum coordinates bounded by xmin = [−A/2,−A/2]T
and xmax = [A/2, A/2]T , respectively [13], [35]. To avoid
coupling effects, MAs require a minimum spacing of D =
λ/2. The initial penalty factor are set as ρ = 10 and ϱ = 10,
respectively. Also, we define the received signal-to-noise ratio
(SNR) as SNR = Pmax/σ

2
k and Dmin is set as 2.

A. Centralized Algorithm Performance

We first evaluate the convergence performance of the pro-
posed centralized beamforming algorithm. For clarity, we
denote the fully, group, and single-connected architectures of
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Fig. 5: Average sum rate versus SNR of centralized beam-
forming algorithms with M = 4 and K = 4.

BD-RIS as FC, GC, and SC, respectively, corresponding to the
solutions of problem (9) under constraints Xi (i ∈ {1, 2, 3}).
Fig. 4 illustrates the convergence behavior of the centralized
beamforming algorithm for the three BD-RIS architectures.
The results confirm that MA-aided schemes achieve better
performance than the FPA-aided ones. However, the MA-based
approaches require additional number of iterations to converge
due to the antenna position optimization process inherent in
our proposed algorithm. On the other hand, compared to GC
and SC architectures, the FC BD-RIS delivers performance
gains of 17% and 57%, respectively. This is because the
FC BD-RIS can more effectively exploit multiuser diver-
sity, enabling superior signal reflection and broader service
coverage. As a result, the FC BD-RIS offers significantly
greater flexibility in application compared to “GC/SC” con-
figurations. In Fig. 5, we evaluate the sum rate versus SNR
for investigated algorithms. At low SNR, all configurations
yield similar sum rates, but as SNR increases, MA (FC-RIS)
outperforms others, achieving the highest sum rate with widen-
ing performance gaps. Indeed, with a higher transmit power
budget, the proposed algorithm can leverage greater flexibility
in power allocation during transmission, thus facilitating more
effective passive beamforming by the RIS, especially in the
FC structure, which has a higher DoF in tuning its elements.

Fig. 6 illustrates the evolution of the average BS-RIS
channel gain during antenna position optimization. As the
number of iterations increases, the channel power gain steadily
improves, further demonstrating how MAs enhance the com-
munication environment by mitigating small-scale fading from
multipath effects. Fig. 7 illustrates the evolution of the av-
erage equivalent user channel gain ∥h̃k (r̃) ∥2 and cross-
correlation coefficient Φ, where the latter is computed as
Φ =

∑
1≤k ̸=q≤K

|h̃k(r̃)
H h̃q(r̃)|

∥h̃k(r̃)∥2∥h̃q(r̃)∥2
. The joint optimization pro-

cess reveals the channel gain increases marginally 71% while
user similarity drops significantly 41.8%, demonstrating that
the performance improvements arise primarily from multiuser
interference mitigation.

To demonstrate the benefits of MAs, we compare them with
three baseline schemes:

Fixed position antenna (FPA): The BS employs a uniform
planar array (UPA) with M antennas uniformly spaced at λ/2
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Fig. 7: Average equivalent BS-user link channel power gain
and normalized crosscorrelation against number of iterations.

intervals.
Exhaustive antenna selection (EAS) [43]: The BS adopts a

larger UPA comprising 2M antennas (λ/2-spaced), selecting
the optimal M -antenna subset via exhaustive search.

Particle swarm optimization (PSO) [44]: The positions of
the MAs in transmitter are updated by the PSO with a penalty
function.

In Figs. 8 and 9, our proposed algorithm consistently outper-
forms all baselines. Specifically, compared with FPA and AS
methods, the proposed optimization framework and other MA-
based algorithms can flexibly optimize antenna position in a
continuous spatial region, thus enabling a higher spatial DoF
for significantly enhancing the achievable rate. Indeed, this
performance improvement arises from two main factors. First,
MAs dynamically position themselves to harness construc-
tive multipath fading, thereby enhancing channel power gain
(as demonstrated in Fig. 6). Second, and more importantly,
MAs strategically determine favourable locations that increase
spatial separation among users’ channels, effectively reducing
inter-user interference. Moreover, given a fixed total number of
antennas, the performance gain of the EAS scheme gradually
saturates as the number of selectable antennas increases,
while its performance gap with the MA scheme continues to
increase. Compared with the PSO algorithm, our proposed al-
gorithm demonstrates significantly superior performance. This
is particularly relevant in practical scenarios, where zeroth-
order optimization methods such as PSO often involve tuning

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2025.3613556

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on October 18,2025 at 11:47:38 UTC from IEEE Xplore.  Restrictions apply. 



12

-10 -5 0 5 10

SNR (dB)

0

1

2

3

4

5

6

A
v

e
ra

g
e

 s
u

m
 r

a
te

 (
b

p
s
/H

z
)

MA (Proposed Algorithm)

MA (PSO)

AS

FPA

Fig. 8: Average sum rate versus SNR of the proposed Penalty-
BCD algorithm.
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proposed Penalty-BCD algorithm.

numerous hyperparameters, rendering it challenging to identify
effective configurations.

B. Distributed Algorithm Performance

To demonstrate the effectiveness of the proposed AS-
ADMM framework at different SNRs, we plot the sum rate as
a function of SNR as shown in Figs. 10 and 11. Our results
show that the AS-ADMM algorithm achieves performance
comparable to S-ADMM in both FAS and MA scenarios.
Moreover, Fig. 11 verifies that our algorithm is still applicable
under three different RIS architectures. Additionally, the MA
scheme achieves approximately 30% higher performance than
the FPA scheme across all scenarios by fully exploiting
spatial DoF. This gain stems from simultaneous improvements
in three aspects: channel conditions, multiuser interference
suppression, and antenna array geometry optimization.

Finally, we verify the computational overhead of the pro-
posed algorithms. In the AS-ADMM framework, the effects of
asynchronous clock settings can be quantified by the parameter
Dmin, which is the minimum number of users the BS needs to
wait for to return their update results before each new update.
In Table I, it is clear that increasing Dmin leads to longer
competition time per iteration, with performance precisely
approaching that of synchronized algorithm. Fig. 12 demon-
strates that the distributed algorithm achieves approximately
a 50.18% reduction in computational complexity compared to
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Fig. 10: Average sum rate versus SNR of distributed beam-
forming algorithms with M = 4 and K = 4.
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Fig. 11: Average sum rate versus SNR of distributed beam-
forming algorithms with M = 4 and K = 4.

its centralized execution. This improvement stems from the
distributed approach’s ability to perform calculations locally
at user devices, which inherently involves lower complexity
than centralized processing at the BS.

In Table II, it can be seen that the performance of the
proposed AS-ADMM algorithm is comparable to that of syn-
chronization under several RIS architectures, but with lower
computational and interaction overhead. As shown in Table III,
for all considered values of K, the AS-ADMM algorithm
converges faster than S-ADMM by relaxing strict synchro-
nization requirements. This enables more frequent variable
updates at both the BS and workers, resulting in significantly
lower computational complexity compared to the synchronous
scheme. We conclude from these simulation results that AS-
ADMM distributed algorithm significantly outperforms S-
ADMM distributed algorithm in the asynchronous network,
even though the two have the comparable convergence behav-
iors.

VII. CONCLUSION

This paper studied downlink transmission of the BD-RIS-
aided MA systems and proposed centralized algorithms to
maximize the sum rate by optimizing the transmit beamformer,
BD-RIS phase-shift, and antenna positions. Furthermore, to
further reduce computational overhead, we proposed an asyn-
chronous distributed optimization solution. Numerical results
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TABLE I: Comparison of Normalized Running Time for
Different Dmin.

Dmin 8 4 2
Normalized Running Time [s] 1 0.9186 0.9142

SE Performance [bps/Hz] 5.9143 4.6673 4.4641

TABLE II: Comparison of Normalized Running Time for
Investigated Algorithms.

Normalized Running Time SC-RIS GC-RIS FC-RIS
S-ADMM 0.8286 0.9860 1.0000

AS-ADMM 0.7650 0.8320 0.8627

demonstrated that MAs can effectively reduce user channel
correlation, significantly mitigating multi-user interference,
while antenna displacement helps harness multipath effects
from channel fading and improve channel gain in BD-RIS
systems. Moreover, our proposed asynchronous distributed
algorithm achieves performance close to synchronous schemes
at significantly lower complexity. Future work will explore
robust beamforming design for BD-RIS-aided MA systems
with channel uncertainty.

APPENDIX

A. Proof of Proposition 1

Applying the Lagrangian dual transform, we reformulate the
objective function of (9) as∑

k∈K

(log (1 + ιk)− ιk) +
∑
k∈K

(1 + ιk) γk
1 + γk

, (67)

where we set g (W, r̃,Θ, ι) =
∑

k∈K
(1+ιk)γk

1+γk
. The

optimal ιk for maximizing (67) is given by ι⋆k =
γk. Following the framework of [36], for a general
complex quadratic form

∑
i∈K aHi (x)B−1

i (x)ai(x), where
ai(x) is a complex vector and Bi(x) is a positive-
definite matrix, the equivalent quadratic representation is∑

i∈K
(
2ℜ{vH

i ai(x)} − vH
i Bi(x)vi

)
, where vi is an auxil-

iary optimization variable. Applying this transformation, the
g (W, r̃,Θ, ι) can be expressed as the quadratic term

g (W, r̃,Θ, ι, τ ) =
∑
k∈K

2
√
1 + ιkℜ{h̃k (r̃)

H
wkτ

∗
k}

−
∑
k∈K

|τk|2 (
∑
i∈K
|h̃k(r̃)

Hwi|2 + σ2
k).

(68)
The optimal τk for maximizing g (W, r̃,Θ, ι, τ ) is derived

as τ⋆k =
√
1+ιkw

H
k (G

HΘHhk)∑
i∈K|(hH

k ΘG)wi|2+σ2
k

. By integrating equations (67)

and (68), we demonstrate that problem (9) is equivalent to
problem (11), thus concluding the proof.

B. Proof of Proposition 2

The right-hand side of (23) can be expressed as

arg min
B∈X2

∥A−C+C−B∥2F , (69)

TABLE III: Comparison of Normalized Running Time for
Investigated Algorithms.

Scheme
Normalized

Running Time
(K = 4)

Normalized
Running Time

(K = 8)

Normalized
Running Time

(K = 16)

FPA, S-ADMM 0.0176 0.0255 0.0853

FPA, AS-ADMM 0.0000 0.0085 0.0295

MA, S-ADMM 0.9986 0.8531 1.0000

MA, AS-ADMM 0.8905 0.8484 0.9629
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Fig. 12: Average sum rate versus SNR of distributed beam-
forming algorithms with M = 4 and K = 4.

where C = Projsym (A) = 1
2

(
A+AT

)
= USVH . (69) can

be further written as

arg min
B∈X2

∥C−B∥2F +2ℜ
{

Tr
(
(A−C)(C−B)H

)}
. (70)

Since the inner product of the skew-symmetric matrix
A − C and the symmetric matrix C − B is zero, i.e.,
Tr
(
(A−C)(C−B)H

)
= 0, this reduces to

arg min
B∈X2

∥C−B∥2F , (71)

where X2 is a subset of {B | BBH = I}, and ÛVH =
argminBBH=I ∥C−B∥2F , which provides a lower bound for
argminB∈X2 ∥C−B∥2F . This bound is tight because ÛVH ∈
X2.

Substituting the SVD of C into C = CT , we obtain:

USVH = V∗SUT . (72)

By left-multiplying (72) by UH and right-multiplying by
U∗, we obtain SVHU∗ = UHV∗S. Define YR = UH

RV∗
R.

For its non-diagonal entries yi,j , where i ̸= j, ∀i, j ∈
{1, . . . , R}, the condition yi,j = si

sj
yj,i must hold. Similarly,

multiplying (72) left by VT and right by V, respectively, gives
VTUS = SUTV, leading to:[

VT
RURSR 0

VT
N−RURSR 0

]
=

[
SRU

T
RVR SRU

T
RVN−R

0 0

]
. (73)

This implies UH
RV∗

N−R = 0 and y∗j,i = si
sj
y∗i,j . Since

yi,j = si
sj
yj,i, it follows that yi,j = 0 for i ̸= j, making

YR a diagonal matrix. Given Û = [UR,VN−R], it can
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be verified that Û is unitary and ÛHV∗ is diagonal, i.e.,
ÛHV∗ = VHÛ∗.

Thus, the symmetric unitary projection of Z can be
expressed as Projsymuni(Z) = ÛVH = V∗ÛT =
Projsymuni(Z)

T . Since Projsymuni(Z) Projsymuni(Z)
H =

ÛVHVÛH = I, the proof is complete.
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