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Abstract

Cell-free massive multiple-input multiple-output (mMIMO) and extremely large-scale MIMO (XL-

MIMO) are regarded as promising innovations for the forthcoming generation of wireless communication

systems. Their significant advantages in augmenting the number of degrees of freedom have garnered

considerable interest. In this article, we first review the essential opportunities and challenges induced by

XL-MIMO systems. We then propose the enhanced paradigm of cell-free XL-MIMO, which incorporates

multi-agent reinforcement learning (MARL) to provide a distributed strategy for tackling the problem

of high-dimension signal processing and costly energy consumption. Based on the unique near-field

characteristics in XL-MIMO systems, we propose two categories of the low-complexity algorithm design,

i.e., antenna selection and power control, to adapt to different cell-free XL-MIMO scenarios and meet

the increasing data rate requirement. For inspiration, several critical future research directions pertaining

to green cell-free XL-MIMO systems are presented.
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I. INTRODUCTION

The next generation of wireless communication systems, i.e., the sixth-generation (6G), is

expected to deliver unprecedented levels of performance, particularly in digital twins, integrated

sensing and communication, and extended reality scenarios. The commercialization of massive

multiple-input multiple-output (mMIMO) technology has played a significant role in wireless

network development. However, conventional MIMO techniques face limitations in meeting the

complex requirements of 6G use cases. In light of this challenge, emerging technologies such as

cell-free mMIMO and extremely large-scale MIMO (XL-MIMO) are being proposed to overcome

the capacity constraints of conventional MIMO. These advanced technologies are critical to fulfill

the massive connectivity and all-round multidimensional access to space, air, ground, and sea,

which will enable the Internet of Everything.

As a high-profile technology, the novel cell-free mMIMO holds great promise in meeting the

growing demand for increasing network throughput and low-latency transmission. By deploying a

large number of geographically distributed access points (APs) connected to a central processing

unit (CPU), cell-free mMIMO can effectively address the inter-cell interference that exists in

the intrinsic implementation of “cell-centric” network [1], [2]. Similarly, the promising XL-

MIMO technology inherits the prior cellular network with the world-shaking change of base

stations (BSs) to adapt the communication variations from far-field to near-field since the massive

antennas deployment [3], [4]. Moreover, the XL-MIMO can also provide a much stronger

beamforming gain as well as harvest abundant degrees of freedom (DoFs) to compensate for the

severe path loss in the millimeter-wave and terahertz band communications.

In cell-free mMIMO systems, the data processing procedures can be performed locally using

the large-scale fading decoding (LSFD) method [1]. This approach is highly effective in relieving

the computational load on CPUs. From the perspective of electromagnetic (EM) fields, the addi-

tion of antennas in XL-MIMO is a superficial phenomenon. In fact, the significant changes occur

in the analysis methods, where the spherical wavefront-based analysis framework replaces the

planar wavefront-based one [5], [6]. In parallel, the interdisciplinary Electromagnetic Information

Theory (EIT) is undergoing a global roll-out research. By integrating cell-free mMIMO and

XL-MIMO, namely cell-free XL-MIMO, this prototype will be a forward-looking architecture

that can accommodate full scenarios and hot-spot venues to extend the range of near-field

communication (NFC), as shown in Fig. 1.
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Fig. 1. System architecture and application scenarios of cell-free XL-MIMO systems around NFC. The BSs are equipped with

XL-MIMO panels, and the user equipments are equipped with different numbers of antennas, from single to hundreds. BSs

and users are distributed in the service area. The BSs are connected to a CPU with a high computation processing ability via

fronthaul links. The communication regions are divided into reactive near-field, radiative near-field, and far-field [4]. In XL-

MIMO systems, the communication focuses on the radiative near-field. The boundary between radiative near-field and far-field is

decided by the Rayleigh distance [7], [8], and visibility regions (VRs) induced by the non-stationary channel are illustrated since

sheltering from different buildings and obstacles. In 2019, Ericsson proposed radio stripes, the prototype of cell-free mMIMO

systems, which is an ideal deployment solution for outdoor and indoor areas such as shopping malls, stadiums, smart factories,

and other scenarios [1].

To reduce the overall system computational complexity and energy consumption, low-complexity

baseband signal processing algorithms are in demand. Multi-agent reinforcement learning (MARL)

has been widely used for decision-making in large-scale network scenarios [9], [10], [11], e.g.,

unmanned aerial vehicles (UAVs), swarm intelligence, and traffic scheduling. We hasten to

say that the algorithms are proficient to improve spectral efficiency (SE), enhance interference

management in XL-MIMO systems, and to increase coverage, improve user fairness, and achieve

distributed resource allocation in cell-free mMIMO systems. In multi-agent systems, interactions

between intelligent agents and environments drive the achievement of goals. In particular, RL
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algorithms become almost indispensable tools for exploring complex dynamic scenarios, which

can effectively reduce the overall power consumption. Notable advances include the development

of low-complexity RL-based power control algorithms that can be scaled to XL-MIMO systems

and the exploration of hybrid analog-digital precoding schemes that can considerably enhance

the energy efficiency (EE).

Motivated by the aforementioned works, we investigate the cell-free XL-MIMO systems with

MARL techniques. The main contributions are summarized as follows:

• We introduce new NFC characteristics, basic system scheme, and application scenarios of

cell-free XL-MIMO systems. More important, we comprehensively introduce the crucial

challenges of power consumption, computational complexity, and user mobility.

• We investigate three technical frameworks, e.g., fully decentralized, fully centralized, and

centralized training and decentralized execution (CTDE), algorithm categories, and appli-

cations of MARL methods in existing literature, as shown in Fig. 2.

• To strive for the undiscovered performance, we focus on two critical methods, i.e., antenna

selection (AS) and power control, to reduce power consumption and improve SE with

MARL methods. Numerical results are given to illustrate the ability to improve SE and EE.

Finally, the article concludes by discussing open problems toward uncovering the potential

of cell-free XL-MIMO systems.

II. OPPORTUNITIES AND CHALLENGES OF XL-MIMO COMMUNICATION SYSTEMS

In this section, we focus on the newly discovered EM wave transmission characteristics in

the NFC domain. Through the unique near-field properties uncovered by the XL-MIMO, such

as the spherical wave model (SWM), spatial non-stationary effect, and effective DoF (EDoF),

they can be well designed to enhance the communication performance. In addition, the power

consumption, computational complexity, and mobility problems present us with new challenges.

A. New Opportunities

• Spherical Wave Model

SWM is a mathematical tool used to describe the behavior of EM waves in three-dimensional

space [4]. An accurate SWM is essential for excavating the capacity upper bound of XL-MIMO

systems as it facilitates the efficient processing and manipulation of EM waves, thereby improving
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signal quality and enhancing data throughput. In previous research, channel models mainly

focused on the basic assumption of Rayleigh or Rician fading channels. However, once the

communication distance is shorter than the Rayleigh distance, e.g., for an XL-MIMO panel with

a diagonal of 10 m at 3 GHz, the boundary is up to 2 km, the communication domain focuses

on the near-field rather than the far-field. Therefore, the existing channel models used to analyze

the conventional MIMO systems are not suitable for XL-MIMO systems as the NFC dominates

[7].

Furthermore, the integration of massive antennas can make it difficult to obtain accurate

channel state information (CSI) in XL-MIMO systems. Regarding the near-field effects, the

channel should be properly modelled to ensure accuracy in the near-field under the spherical

wavefront assumption. Based on EIT, the exploration of SWM has revolutionized for enabling

high-speed data transmission, broadening coverage and improving user experience [12].

• Spatial Non-stationary Effect

In XL-MIMO systems, the spatial non-stationary effect arises because only partial antennas

in BSs can receive spherical EM waves from specific UEs propagated by different scatters.

This can lead to fluctuations in the channel gain, phase, and delay over time [12]. Similarly,

each UE can only observe a subset of the antenna array, which is called the visibility region

(VR), as shown in Fig. 1. As a result, the channel capacity and quality vary significantly, and the

traditional channel estimation (CE) and equalization techniques may not be effective at mitigating

the effects of non-stationary channels. Thus, effectively exploiting this peculiarity would be a

tutorial for green communication systems, as a cost-effective way to reduce the computational

complexity for crowded scenarios.

• Effective Degree of Freedom

An important parameter characterizing the performance of XL-MIMO systems is the EDoF,

referring to the number of significant electromagnetic modes. It represents the potential capacity

of a MIMO system to spatially multiplex multiple data streams. The EDoF considers the effects

of various factors, e.g., channel correlations, signal-to-noise (SNR) ratios, and interference. How-

ever, increasing the number of antennas may not always improve the EDoF, as it may increase

channel correlation, interference between different data streams, and energy consumption, all

of which degrade the system performance [4]. Therefore, to achieve a high EDoF in practical

XL-MIMO systems, appropriate antenna numbers and configurations should be chosen based on
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specific wireless channels and system requirements, e.g., the maximum EDoF is around 1600

for a 2.25 m × 2.25 m panel size at 0.1 m wavelength to satisfy the hot-spot scenarios.

B. New Challenges

• Power Consumption

Although the XL-MIMO technology can effectively improve the speed and reliability of the

signal transmission, implementing enormous sub-processing units in the XL-MIMO transceiver

can result in high hardware cost and power consumption. Reducing the power consumption in

the XL-MIMO is essential to ensure the energy-efficient, cost-effective, and sustainable while

maintaining its high performance capabilities [13]. Currently, existing methods solving the above

challenges mainly focus on traditional methods, e.g., heuristic fractional power control laws and

deep learning-based power control methods. It is necessary to balance the system performance

and power consumption factors considering the characteristics in practical NFC scenarios.

• Computation Complexity

Complex computations significantly increase latency in wireless communication systems with

limited computing power. Distributed signal processing methods are trends to deal with the

high-dimension computation. By delegating the processing authorities to the local processing

unit (LPU), XL-MIMO can reduce latency and specialized processors or additional memory

requirements. In general, the antenna selection technique involves selecting the appropriate subset

of antennas from the antenna array, which can help minimize the computational burden of signal

processing and power consumption, as well as improve SNR [14].

• User Mobility

In XL-MIMO systems, user mobility leads to time-varying channel conditions. As users move

within the coverage area, channel characteristics, such as path loss, fading, and interference,

change dynamically. Moreover, the movement of UEs can switch the propagation mode between

the near-field and far-field, and thus, the channel estimation and codebook design in the hybrid-

field should be re-examined. Additionally, user mobility necessitates dynamic adaptation of

transmission strategies, handover management, user scheduling, and mobility prediction. By

considering these factors, XL-MIMO systems can be effectively optimized to maintain reliable

connectivity.

With these aspects, the XL-MIMO can be seen as an extended version of the conventional

MIMO, which involves more than just increasing the number of antennas deployed from 64
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antennas to 256 antennas. From an environmentally-friendly perspective, by optimizing the

transceiver power and adopting appropriate distributed processing algorithms, XL-MIMO systems

can achieve a superior performance while minimizing the energy consumption and reducing the

carbon footprint of wireless communication systems.

III. SYSTEM ARCHITECTURE OF MULTI-AGENT CELL-FREE XL-MIMO

With the increasing computational dimension and time-varying configurations and parameters,

the traditional optimization methods do not work well with XL-MIMO systems. We have to seek

a better solution to resolve it. In what follows, by integrating the advantages of the cell-free

mMIMO and MARL methods, we propose a novel cell-free XL-MIMO system with the MARL

optimization scheme to further improve the performance of cell-free XL-MIMO systems.

A. Multi-agent Reinforcement Learning

MARL, a subfield of artificial intelligence, has been widely used in real-world scenarios focus-

ing on the interaction with the environment and multiple agents. Extending from a single-agent

domain to a multi-agent environment, this method arises from the need to develop intelligent

systems that can interact with other intelligent agents in complex and dynamic environments.

It combines the principles of RL, game theory, and multi-agent systems to enable agents to

learn how to interact with other agents and the environment to achieve their goals [9]. The

main idea behind MARL is to model the behavior of a group of agents that can cooperate,

compete, and even negotiate. More intuitively, different training schemes, e.g., fully decentralized,

fully centralized, and centralized training and decentralized execution (CTDE), are considered

as promising paradigms to adapt to different environments. Furthermore, the existing MARL

algorithms can be divided into three categories.

• Value Decomposition

Value decomposition (VD) based algorithms are usually based on value functions, i.e., Deep

Recurrent Q-Network, to decompose value functions into local value functions for agents, so as

to deal with the interaction between multiple agents. This type of algorithm usually combines

the actions and states of multiple agents as global states, and then uses single-agent algorithms

such as Q-learning to learn local value functions.

• Actor-Critic
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※ The centralized training and centralized execution (CTCE) paradigm is not widely used in MIMO systems since the difficulty in coordination and heavy communication 

overhead.  

Fig. 2. Summary of mainstream MARL technical frameworks, including Decentralized Training and Decentralized Execution

(DTDE) and Centralized Training and Decentralized Execution (CTDE), algorithm categories, and applications in the existing

literatures [7]-[10].

Actor-Critic (AC) based algorithms combine value functions and strategy functions with two

networks, Actor and Critic, where the Actor network learns the strategy and the Critic network

evaluates the value of the action and updates the actor’s policy. Examples of AC-based methods

include Asynchronous Advantage Actor-Critic (A3C) [15] and Multi-agent Deep Deterministic

Policy Gradient (MADDPG) [11]. To illustrate, MADDPG follows the CTDE paradigm, where

the additional information has been gathered in Critic networks to faciliate the training process

while Actor networks take actions based on their own local observations.

• Experience Replay

Experience replay (ER) based algorithms typically use experience replay caches to store past

experiences and randomly sample them for training. This approach speeds up training by making

more efficient use of data, and is usually applied experiential playback to single-agent algorithms,
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Fig. 3. The basic scheme of CTDE-based MADDPG algorithm interacting with cell-free XL-MIMO systems.

i.e., Deep Policy Inference Q-Network. However, in multi-agent scenarios, the implementation

of experience reply is more complicated, and the interaction between the multi-agent needs to

be considered.

As shown in Fig. 2, these three categories have been widely used in communication scenarios

for resource allocation. While the centralized learning method is advantageous for global as-

sessment with unified decision-making, distributed learning using the MARL methods is more

feasible for local processing, which is beneficial for real-time processing.

In multi-agent environments, agents’ actions affect the state of the environment, and each agent

must learn a policy that not only maximizes its rewards but also takes into account the actions

of other agents. The MADDPG algorithm extends the popular DDPG algorithm by introducing

a centralized Critic network that can observe the joint actions of all agents and provide feedback

to each agent’s policy network, as shown in Fig. 3. In turn, the Actor network learns to optimize

their policies, taking into account the feedback from the Critic network and the observations of

other agents.

In the signal processing phase of the XL-MIMO, high-dimensional matrix operations, and time-

sensitive actions are critical to achieve the optimal system performance. Therefore, traditional

data processing schemes no longer meet the requirements of cell-free XL-MIMO systems. As

such, we have to concentrate on local processing or distributed signal processing to reduce the

load on the fronthaul links. For example, we can apply the MARL methods to approach the SE

or EE maximum by defining a Markov decision process that includes states, actions, and rewards
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[9]. The agents interact with the environment in the current state and move to the next state.

Then, the next state is sent to the agent, which decides to take an action against the environment.

The environment then sends the next state and reward to the agent.

B. System Architecture of Multi-Agent Cell-Free XL-MIMO

In conventional massive MIMO systems, centralized processing methods lack the ability to

parallelize operations. Furthermore, scaling up the dimensions of the array proves to be an

arduous feat owing to the significant amount of interconnections and overwhelming burden placed

on the central node. Therefore, various decentralized techniques have been proposed. Among

them is the cell-free architecture, which aims at eliminating cell boundaries and focusing on user-

centric communication [1], providing more flexible transmission/reception of UEs. To adapt to

the requirements of distributed architectures, we propose a modified embodiment of distributed

XL-MIMO that exploits the advantages of cell-free mMIMO systems while considering multi-

agent systems simultaneously.

As shown in Fig. 1, a distributed-processing XL-MIMO system architecture drawing on the

merits of cell-free mMIMO is illustrated. The so-called LSFD method can be used to detect the

signals using maximum ratio combining or minimum mean squared error combining [1], [13].

For each BS equipped with XL-MIMO panels, it completes the signal processing as well as the

channel estimation with all the CSI. All processed signals are then transmitted to the CPU via

fronthaul links. In cell-free XL-MIMO systems, there are multiple antennas at the transmitter and

receiver sides, and a large number of UEs communicating simultaneously. The communication

and resource allocation between these antennas and users can be optimized using MARL, a

technique that allows agents to learn how to behave in an environment by interacting with it and

receiving feedback in the form of rewards.

Using MARL, agents, i.e., UEs, BSs, and even antennas, can learn to allocate physical

layer resources and optimize the transmission strategy further. They interact with the system

environment with their CSI and location for acquiring the future decision until the SE or EE

maximum is reached. Besides, the MARL-based approach can adapt to dynamic changes in the

environment, such as UE mobility and time-varying channels.
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IV. DIRECTIONS AND SOLUTIONS OF MULTI-AGENT CELL-FREE XL-MIMO SYSTEMS

Multi-antenna technology has been widely recognized as an effective means of improving SE

with diversity gain and multiplexing gain. However, to achieve more performance gains, the

computational complexity of cell-free XL-MIMO systems increases rapidly with the number of

antennas and grievous interference causes signal quality degradation.

Having introduced the new opportunities, in this section, we provide a new look to solve the

urgent challenges with MARL methods, e.g., AS and power control.

A. Challenge 1: Antenna Selection

1) MARL-empowering Antenna Selection

In cell-free XL-MIMO systems, it is necessary to explore effective AS techniques to reduce

the number of antennas used in work patterns, enhance performance, and minimize complexity,

especially in energy-constrained environments [14]. Not all antennas serve uplink or downlink

UEs simultaneously, making it possible to reduce the number of radio-frequency (RF) links
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and UEs are equipped with XL-MIMO panels. The BS with Nr = 81 antennas serving K = 6 UEs with Ns = 9 antennas each

simultaneously within a square of size 1000 m × 1000 m. Additionally, the data transmission power p = 200 mW.

and signal processing units to lower hardware cost and power consumption. As the number of

antennas tends to be enormous, the circuit cost and computational complexity of conventional

methods based on fully-digital receive arrays will increase dramatically.

AS provides a low hardware-complexity mentality for exploiting the spatial-diversity benefits

of multiple antenna technology with solely partial antennas activated to serve different UEs and

can be considered at both transmitters and receivers in cell-free XL-MIMO systems. The basic

idea of AS is to choose the optimal subset of antennas from the available antennas in the whole

antenna array, based on some selection criteria [14], as shown in Fig. 4. In a cell-free XL-

MIMO, AS can be achieved either statically or dynamically. In static AS, a fixed set of antennas

is selected that remains unchanged during transmission, while in dynamic AS, the optimal set

of antennas is determined based on the channel conditions at each transmission.

In Fig. 5, we draw the boxplot of the sum SE and average EE under different AS strategies.

Each UEs’ antenna is regarded as an individual agent to select different BS antenna for achieving
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the maximum SE. For a fair comparison, we assume the case without AS as a benchmark. The

traditional optimal channel selection based on LSF coefficients decreases the system performance

by sacrificing DoFs. However, with the introduction of “multi-agent”, each antenna can dynami-

cally adjust the selected antennas . It is noteworthy that the MADDPG algorithm can effectively

improve the SE of poor quality UEs and nearly achieve a 26% EE improvement compared with

the benchmark.

2) Future Research Directions • Hardware Design: To overcome computationally complex

bottlenecks, one promising solution is to partition the uniform planar array (UPA) or uniform

linear array (ULA)-based XL-MIMO into subarrays-disjoint units with partial-connected struc-

ture and individual processing units. Instead of connecting all the antennas, only a subset of

antennas is interconnected, allowing antennas to be connected in a flexible and scalable manner.

• Subarray Selection: Apart from AS, subarray selection is worth investigating with fixed

or adjustable format depending on whether they correspond to separate hardware entities or

software-defined logical connections between different antenna elements, as shown in Fig. 4.

The use of subarrays enables more efficient and distributed processing, enabling the system to

handle larger and more complex data sets without compromising on performance and accuracy.

• Non-stationary Perspective: One approach to achieving AS in non-stationary channels is

to use multiple antennas in combination with channel estimation and equalization techniques,

such as space-time coding and beamforming. These techniques can help mitigate the effects of

non-stationary channels by using multiple antennas to create a more robust signal and adapting

the transmit and receive strategies to the changing channel conditions.

B. Challenge 2: Power Control Design

1) Existing Power Control Method

Apart from the AS, designing an effective power allocation algorithm is another open challenge

for reducing power consumption in cell-free XL-MIMO systems. With limited communication

resources, the dynamic power allocation is worth optimizing based on the real-time channel

information. The existing power control methods solving the inter-user interference are focused

on the following optimization objectives: max-min, max-product, and max-sum. Traditional

power control methods, such as linear optimization techniques, have limitations in large-scale

MIMO systems due to the increased complexity and static configuration. Though the non-
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convex problem can be easily solved using supervised learning-based methods or centralized

mechanisms, the prior optimal output data is challenging to obtain in large-scale networks.

With the benefits of massive antennas, the cell-free XL-MIMO poses new challenges for

power optimization. Affected by the near-field propagation and spherical wavefront, different

parts of the extremely large array encounter different signal strengths. Besides, certain antennas

may have minimal impact on the overall system performance due to the non-stationarities and

VRs. These lead to the activation of power-intensive RF links for these antennas becoming

burdensome and significantly reducing the total EE of systems. In this case, existing algorithms

are not always able to harvest the global optimal solution, especially when dealing with high-

dimensional matrix operations. To overcome these limitations, MARL algorithms have been

applied to deal with power control in cell-free XL-MIMO systems. 2) Proposed MARL-based

Power Control Method

RL algorithms enable real-time optimization of power control decisions based on the current

state of the system, including channel conditions and signal quality. The basic idea behind

using MARL algorithms for power control in large-scale MIMO systems is to model each BS

or antenna as an individual agent and to optimize the joint behavior of all agents using RL

techniques. This allows for a more flexible and data-driven power control solution compared to

traditional methods.

To achieve power control in large-scale MIMO systems using MARL algorithms, the following

steps can be taken:

• Select individual agent: Each antenna, BS, or UE can be modeled as an independent agent,

with its unique state, action, and reward, depending on the uplink or downlink transmission. The

state of the agent should represent the current channel conditions and interference, while the

action should represent the transmit power of the antenna.

• Define reward function: The reward function should reflect the performance objective of

the power control algorithm, such as maximizing SE or minimizing interference.

• Train MARL algorithm: MARL algorithms should be trained using the defined reward

function and the modelled agents. The training process involves multiple iterations of the agents

taking actions, observing the results, and updating their policies based on the reward received.

• Implement power control algorithm: Once the training process is complete, the power

control algorithm can be implemented in large-scale MIMO systems. The algorithm will use the

learned policies of the agents to determine the optimal transmit power of each antenna.
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Fig. 6. Sum uplink SE of cell-free XL-MIMO systems with different power control algorithms: the equal power method,

MADDPG strategy, and D-MADDPG under different BS number M and XL-MIMO antennas number N . In the D-MADDPG

architecture, we model the power control problem as the MARL framework with two layers. In the first layer, each agent

corresponds to a BS in the cell-free XL-MIMO system, and the objective is to optimize its transmit power level to maximize

system performance while taking into account interference from other agents. Then, with the constraint of BS power obtained in

the first layer, the second layer is responsible for the allocation of each antenna of XL-MIMO panels. The simulation parameters

are the same with Fig. 5.

• Evaluate performance: The performance of power control algorithms should be evaluated

in a realistic simulation or test environment to ensure their effectiveness in cell-free XL-MIMO

systems.

The application of MARL algorithms for power control in large-scale MIMO systems is a

growing area of research, and recent studies have demonstrated the potential of these algorithms

for improving the performance and efficiency of MIMO systems [13]. Based on existing MARL

methods, we successfully apply the MADDPG algorithm to solve power control problems for

better performance. In addition, we introduce a double-layer power control architecture called

D-MADDPG that is based on LSF coefficients between antennas. This architecture differs from

the conventional single-layer architecture, which considers all antennas subjected to an agent as

a whole, and it demonstrates a notable advantage in increasing the sum SE, as shown in Fig. 6.

3) Future Research Directions
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• Precoding Design: The hybrid precoding is promising to relieve the pressure of excessive

power consumption by decomposing the high-dimensional full-digital precoder into the realiza-

tion of an analog beamformer and digital precoder. Through effective precoding design, the RF

links and power costs can be significantly reduced. Additionally, advanced precoding designs

can mitigate the beam split effect that severely degrades the achievable rate degradation.

• Partial Interaction Design: Designing a distributed MARL algorithm with partial-interaction

architecture is a promising way to lessen the quantity of network training and information

interaction. Partial-interaction allows agents to selectively select appropriate agents for interaction

based on distance, service relationship, and other factors, rather than interacting with all agents

in cell-free XL-MIMO systems, which is more practical for scalable networks.

• Jointly Optimization Design: The jointly optimized design of AS and power control is

promising to enhance the robustness of the system, eliminating the need for separate optimization.

And the power allocation can be re-examined with appropriate antennas selected from XL-MIMO

systems.

Based on the above discussion, the design of AS and power control based on real-time

interactions with the MADDPG method achieves a higher performance gain in the near-field. Ac-

cordingly, such effective MARL methods can be extended to other resource allocation schemes.

V. FUTURE RESEARCH DIRECTIONS

A. Hybrid-Field Channel Estimation

To obtain accurate CSI, CE is a key challenge because the near-field angle-domain channel is

not sparse. Faced with huge data streams, lightweight CE methods with reduced computational

complexity, fast convergence, and exhaustive channel feature capture are essential to adapt to the

near-field characteristics and non-stationary channels. Furthermore, the accurate models based on

the spherical wavefronts even the hybrid spherical- and planar-wavefronts, which capture more

channel details are essential to reduce the bit error rate due to the user mobility.

B. Hybrid-Field Beamforming

First, for the near-field beam training, the array response vector of near-field channels is

not only related to the angle but also the distance, resulting in a high-dimension codebook

set. Thus, a polar-domain codebook should be utilized instead of a discrete Fourier transform

codebook to capture the information on the channel paths. Secondly, the near-field beam split
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effect occurs when the transmitting antennas are placed close to each other and the distance

between the antennas is comparable to the wavelength of the signal being transmitted. In such

cases, the transmitted signal may split into multiple near-field beams that interfere with each

other. Thirdly, it is a hybrid-field joint design optimization for solving the switch from far-field

beamsteering to near-field beamfocusing, and vice versa.

C. RIS-aided Cell-free XL-MIMO

With the ability to dynamically reconfigure the electromagnetic environment, reconfigurable

intelligent surface (RIS) can improve channel quality and overcome the limitations of the prop-

agation environment. In the future, the evolution of RIS will perhaps develop towards extremely

large-scale RIS (XL-RIS) for the future 6G wireless communications, which makes beam training

complicated and data throughput exploded. Additionally, since the RIS is deployed in the near-

field of XL-MIMO, the RIS codebook should be well-designed considering the NFC character-

istics.

D. Green Communications

To achieve green communications, next-generation communication systems propose sustain-

able, energy-efficient, and energy-aware requirements. Low-resolution devices, e.g., analog-to-

digital converters (ADCs), are the trend to cope with the great expense of cell-free XL-MIMO

systems. On the one hand, hardware impairments still confuse signal processing, especially when

the dimension is gigantic. Accordingly, the fruitful compensation algorithm design is necessary

to approach the optimum. On the other hand, the simultaneous wireless information and power

transfer technology should focus on elaborate near-field beamforming design to achieve a higher

performance.

VI. CONCLUSION

In this article, the fundamental opportunities in the near-field communication of cell-free XL-

MIMO systems and open challenges have been discussed in terms of SWM, spatial non-stationary

effect, EDoF, power consumption, and computational complexity, respectively. In particular, we

investigated the existing MARL categories and proposed the basic scheme of promising cell-

free XL-MIMO systems using MARL methods. Then, we started with two existing challenges

namely AS and power control. Accordingly, we successfully applied MADDPG algorithms to
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solve them. Finally, we pointed out the critical and promising future research directions, which

are hybrid-field CE, hybrid-field beamforming, RIS-aided cell-free XL-MIMO architecture, and

green communications.
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